Analysis quality, carcass classification, young bulls. Introduction Meat production

Analysis of the beef meat quality in a slaughterhouse in Raska district Petrovi? Ž. Miloš 1*, ?okovi? Radojica 1, Vasilev Dragan2, ?or?evi? Vesna 3, Dimitrijevi? Mirjana 2, Stajkovi? Silvana 2, Karabasil Ne?eljko 2  Abstract The quality of slaughtered animals is a subject of interest, of both primary production and the meat industry. Classification of the carcasses is performed in slaughterhouses immediately after a veterinary examination and measurement of the carcasses weight. Present study examines the quality of young cattle carcasses in a slaughterhouse in the Raska district, according to the standard applied in the EU but not in Republic of Serbia. Examination has been conducted on 100 cattle carcasses (young bulls). For  the  meat  quality  evaluation  and  grading  the  following  parameters  according  to  the  European standard for the classification of cattle carcasses SEUROP were used: carcass weight, carcass weight and carcass yield, i.e. the carcass conformation, development of the muscles of the carcass as well as the development of basic parts (round, back and shoulder) and the degree of carcass fat tissue coverage.  Key words: beef meat quality, carcass classification, young bulls.  Introduction Meat  production  process  has  several  steps  and  each  of  them  is  significant  for  gaining  of  safe  and quality product. Consumption of beef meat is in third place in Serbia, after pork and poultry (Ostoji? et al.,  2006).  Improving  carcass  performance  and  meat  quality  traits  are  the  main  objectives  of  most research carried out in the beef production area. Meat quality is an important criterion that in?uences consumers decisions to purchase beef (Baltic and Boskovic, 2015; Djordjevic, 2016). Domestic demand is  partially covered by import because domestic production can not  fulfill  the requirements of local market.  In order  to  improve the  current situation it is  necessary  to enhance and maintain  agro-economic policies and strengthen the primary production. Some of the possible solutions for better production and quality  are  improving  the  quality  of  breeding  material,  nutrition  and  nutrition  and  animal  breeding                                                            1 – Faculty of Agronomy ?a?ak, University of Kragujevac 2 – Faculty of Veterinary Medicine, University of Belgrade 3 – Institute of Meat Hygiene and Technology, Belgrade *contact: Petrovi? Ž. Miloš. [email protected] Acknowledgments: This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Projects No. TR 31034 and TR 31001.  technology (Aleksi? et al., 2011, Šefer et al., 2015). Development of production, quality and placement of  this  type  of  meat  requires  improvement  to  the  quality  of  meat  in  carcasses,  which  refers  to  the contribution of edible parts, carcass conformation and the carcass fat coverage, then processing quality and sensory properties (Sretenovi? et al., 2011; Ostoji?-Andri? et al., 2012).  The quality of the slaughtered animals is a subject of interest, of both primary production and meat industry.  Based  on  the  estimated  value  and  classification  of  carcasses,  it  is  possible  to  execute appropriate compensation to the producer i.e. to the owner of animals, but also to assess the market value and  industry  profit.  In order to  assess  the carcasses quality  more thoroughly (meatiness), it is necessary  to  include  several  parameters  such  as:  slaughter  weight,  age  of  animal,  carcass  weight, carcass  yield,  carcass  conformation,  fat  coverage,  musculature  length  (m.  longissimus  dorsi)  etc. Animals  are  classified  based  on  age,  sex,  physiological  status  and  meatiness  (Stamenkovi?  and Radovanovi?, 2004). Carcasses classification should be performed in slaughterhouses immediately after a veterinary examination and measurement of the carcasses weight.  In  developed  countries,  quality  is  taken  into  account  through  balanced  approach  of  carcasses  meat quality assessment. SEUROP classification system that used in EU countries enables prediction of the meat amount in the carcass, which is the basis for determining the selling price of cattle. Given that monetary compensation depends on the achieved quality, it is also an incentive for the improvement of cattle breeding, zootechnical conditions including hygiene, care for the welfare and health of animals in primary  production.  Slaughterhouses,  in  which  over  75  animals  are  slaughtered  weekly  (annual average) are obliged to apply this classification system. The selection of the personnel involved in this activity  is  of  great  importance  and  requires  adequate  education  and  training.  The  uniformity  of  the carcass quality assessment is achieved by precisely defined rules that include parameters and criteria in the corresponding regulations that affect: the category of carcass according to age and physiological status (calves, elderly calves, heifers, young bulls, castrated male animals and cows), carcass slaughter processing  for  classification  and  categorization,  criteria  for  scoring  the  carcass  parameters  of conformation  and  the  fat  tissue  degree  coverage.  As  already  emphasized,  carcasses  meat  quality assessment has its immaterial significance since it enables the payment of meat on the basis of quality achieved and therefore the SEUROP system has been further improved with subclasses within the same class in order to determine the quantity of meat in the most complete manner.  The aim of the present study is to examine the young bulls carcasses quality according to slaughter weight, carcass yield, carcass conformation, and fat coverage degree, the criteria used in EU countries.  Materials and methods The study was conducted from July 10th 2014 to August 4th2014 in the slaughterhouse in Raska district. The examination included carcasses of 100 slaughtered young bulls of the domestic Simmental breed, aged about one year from purchase.  Slaughter  weight  was  measured  after  unloading  at  the  slaughterhouse,  while  carcass  weight  was determined 45 minutes after slaughter, both on the scale with accuracy of ± 0.5 kg.  Carcass weight includes processed carcass without internal organs (with the exception of the kidneys), skin, head, lower parts of legs (separated in the lower part of the carpal, tarsal joints was measured respectively), large blood vessels, spinal cord and the genital organs.  Carcass conformation and the fat coverage were determined 45 minutes after slaughter, according to SEUROP classification (EC No. 1249/2008). Based on the carcass i.e. conformations, carcasses were classified into six classes: S (superior), E (excellent), U (very good), R (good), O (fair) and P (poor), table 1.  Table 1. Conformation of carcass, in particular the essential parts (round, back, shoulder) Conformation class  Description S – Superior All  profiles  extremely  convex;  exceptional  muscle  development (double-muscled carcass type) E- Excellent  All profiles convex to super-convex; exceptional muscle development U- Very good  Profiles on the whole convex; very good muscle development R- Good  Profiles on the whole straight; good muscle development O- Fair  Profiles straight to concave; average muscle development P- Poor  All profiles concave to very concave; poor muscle development  Carcass fat coverage is estimated by numerical grades from 1 (very low coverage) to 5 (very strong coverage), table 2.  Table 1. Degree of fat cover Class of fat cover  Description 1 – low  None up to low fat cover 2 – slight  Slight fat cover, flesh visible almost everywhere 3 – average Flesh, with the exception of the round and shoulder, almost everywhere covered with fat, slight deposits of fat in the thoracic cavity 4 – high Flesh covered with fat, but on the round and shoulder still partly visible, some distinctive fat deposits in the thoracic cavity 5 – very high  Entire carcass covered with fat; heavy fat deposits in the thoracic cavity  Statistical  analysis  was  performed  in  a  statistical  package  StatsSoft  INC  (Statistica  For  Windows, wersion 6.0 computer program manual Tulsa, Stat Soft Inc., 1995). Descriptive statistical parameters (mean,  standard  deviation,  standard  error  of  the  mean,  minimum,  maximum,  and  coefficient  of variation are presented in the table.  Results and discussion Table 3 shows the average mean value of slaughter weight, carcass weight and carcass yield of all 100 cattle carcasses.  Table 3. Summary review of the average value of slaughter weight, carcass weight, carcass yield (n=100) Parameter Parametar Slaughter weight (kg) Masa žive životinje (kg) Carcass weight (kg) Masa trupa (kg) Carcass yield (%) Randman %  Mean ? Standard deviation Srednja vrednost ? Standardna devijacija 518.77?55.74  275.21?28.6  52.61?2.14 Standard error  5.6  2.8  – Standardna greška Minimum Minimum 376.0  210.0  48.00 Maximum Maksimum 652.0  342.0  63.00 Coefficient of variation (%) Koeficijent varijacije (%) 10.74  10.4  –  Results from Table 3 indicate that average cattle slaughter weight was 518.77 kg with a coefficient of variation  of  10.74  %.  The  mean  value  of  the  carcass  weight  was  275.21  kg  with  a  coefficient  of variation  of  10.4  %.  By  analyzing  the  carcass  yield,  it  was  found  that  its  average  was  52.61%  and ranged from 48.00 to 63.00%.  According to statistical data in Serbia, the average weight of adult animals before slaughter during 1995 to 2000 was 478 kg and from 2006 to 2011 was 504 kg. Lower masses compared to our results could be due to the fact that in those data, cattle were not separated by age and sex (Dokmanovic et al., 2014). Aleksi? et al.  (2002) in  their study showed that the average animal  weight  before  slaughter was  592.7 kg,  hot carcass  weight  with  the  lard  was  329.9  kg,  while  average  carcass  yield  value  was  55.66%.  Similar results  have  been  found  in  the  studies  of  Ostoji?  et  al.  (2007)  who  in  477  days  achieved  weight  of Simmental bulls of 579 kg, while average carcass yield value was 57.1%. In the same study, crossbreeds of Charolais and Limousine of younger age (446 and 443 days) achieved higher body weight at the end of the fattening (621 kg and 590 kg, respectively). Drca (2009) reported that male Domestic Simmental type cattle  from  three  di ? erent  manufacturers  in  Serbia  had  carcass  yield  between  54.20%  and  55.40%. Similar results have been found in the studies of  Mirjana et  al.,  (2016)  who  showed that the  average slaughter  weight  of  male  Simmental  beef  cattle  was  586.9  kg.  The  average  carcass  yield  of  male Simmental beef cattle was 56.56%, which is higher than Simmental cattle yield in our study (52.61%). Results by Petrovi? et al. (2016), who have examined 54 young Simmental bulls carcasses divided into two groups,  show that the average weight of the first group of cattle was 478.40 kg, the second group 569.42 kg. Average carcass yield was 51.87% (total for the group 1 and group 2), and ranged from 42.00% to  57.00%.  According  to  research  of  ?iri?  et  al.  (2017),  mean  slaughtered  weight  of  Domestic Simmental bulls was 583.9 kg, while average carcass yield value was 56.32%. Similar results have been found  in  the  studies  of  Petrovi?  et  al.  (2017)  who  showed  that  the  average  slaughter  weight  of  male Simmental beef cattle was 516.23 kg with  coefficient of variation of 10.47%. By analyzing the carcass yield of cattle, it was found that its average was 52.37% and ranged in interval from 39.00 to 63.00%.  Also, Petrovi? et al. (2017) analyzed the carcasses of young bulls (n = 80) in their study, and found that the average weight of live animals was 497.74, with a coefficient of variation of 5.83%. Analyzing the carcass  yield of catlle, average percentage of 52.74% was established, with a minimum / maximum interval of 42.00 to 59.00%. Following  parameters  are  used  for  cattle  carcasses  classification  in  the  EU  countries  (EC  No. 1249/2008): carcass weight, conformation, meatiness, as well as the development of the primer cuts (round, the back and the shoulders), fat coverage degree, etc. A favorable conformation (excellent) of carcasses  implies  that  all  profiles  are  extremely  well  developed  and  convex.  Round  of  excellent carcasses have convex profile, back are well developed and wide and the shoulders are filled and well-formed. Poor or unfavorable carcass conformation is characterized by concave, poorly developed leg, narrow  back  are,  straight  shoulders  and  convex  bones.  Fat  coverage  refers  to  the  amount  and arrangement of subcutaneous, kidney and pelvic fat and residues on the inside surfaces of the chest and abdominal cavity. Fat protects the meat from oxidation, slows down the surface defect of meat, reduces the fat and contributes to good juiciness and aroma (Vukovi?, 2012). From a quality point of view, it is considered as favorable that carcass have uniform and well-distributed, continuous, but not too thick, layer of fat.  Figure 1 shows the results of carcasses classification according to SEUROP classification, while Figure 2 shows the results of carcass classification according to fat coverage degree (n = 100). In term of class only two categories have been set: O (fair) (n = 41) and R (good) (n = 59). Regarding fat coverage degree three categories have been determined (2, 3 and 4). One carcass was labeled as category 2. More carcasses were labeled as category 3 (n=71) compared to number of carcasses labeled as category 4 (n=12).                           Figure 1. Percentage of classes O and R                    Figure 2. Carcass fat tissue coverage degree  41% 59,00%  OR1,00% 87,00% 12,00% 234Similar results were obtained by Petrovi? et al. (2016) who have evaluated class of the carcass based on the conformation as O at 77.5% of the cases and as R in 22.5% of the cases. The carcass fat tissue coverage degree was rated to be 3 at 88.75% and 4 at 11.25% of carcasses. Petrovi? et al. (2017) came to similar results by analyzing the fat tissue coverage degree. The study was conducted on 123 young bull’s carcasses. Their results show that three categories have been established in terms of the degree of fat cover (2, 3, 4), like our study. Only one carcasses was of the category 2. The 3. category was found at 107  carcasses,  which  is  more  than  in  the  category  2  and  in  category  4  (15  trunks).  In  research  by Petrovi? et al. (2017) for all the young bulls carcasses (n = 80), only two categories, in terms of class have been set: O (fair) (n = 62, 77.5%) and R (good) (n = 18, 22.5%). Regarding fat tissue coverage degree two categories have been determined: 3 (mid coverage) and 4 (high coverage). More carcasses were labeled as category 3 (n=71, 88.7%) compared to number of carcasses labeled as category 4 (n=9, 11.2%). Meat quality can be affected by pre-slaughter factors and after slaughter factors of animals including gender, age, feeding, animal handling, animal welfare, slaughter of animal, genotype of animals. In the EU, beef carcass classification for conformation and fatness plays important role in international meet trade marketing. This is why, meat price in the market depends on carcass conformation.   Conclusion Based on the results and their critical considerations the following can be concluded:  • The mean value of carcass weight ranges between 518.77?55.74;  • The carcass yield is 52.61?2.14and it ranged from 48.00% to 63.00%;  • Class of the carcass based on the conformation was evaluated as O at 41% of the cases and as R at 59% of the cases;  • The carcass fat tissue coverage degree was rated to be 2 at 1%, 3 at 12% and 4 at 87% of carcasses;   References Aleksi? S., Petrovi? M.M., Panteli? V., Novakovi? Ž.,  Ostoji?-Andri? D., Staniši? N., Nikši? D., 2011. Chemical, technological and sensory properties of meat from different cattle genotypes. Biotechnology in Animal Husbandry, 27 (3), book 2, pp. 913-918. Aleksi? S., Miš?evi? B., Petrovi? M.M., Pavlovski Zlatica, Josipovi? S., Tomaševi? Dušica, 2002. Investigation on factors affecting the results regarding the dressing percentage value of male young  cattle  of  domestic  Simmental  breed  and  crossbreeds  of  domestic  Simmental  and Limousine breed (in Serbian). Biotechnology in Animal Husbandry, 18 (3-4), pp. 1-14.  Baltic Z. Milan, Boskovic M. 2015. When man met meat: meat in human nutrition from ancient  times till today. Procedia Food Science, 5, 6?9. ?iri?  J,  Luki?  M,  Radulovi?  S,  Janji?  J,  Glamo?lija  N,  Markovi?  R,  Balti?  Ž.  M,  2017.  The relationship between the carcass characteristics and meat composition of young Simmental beef cattle. IOP Conference Series: Earth and Environmental Science,Volume 85, conference 1. Dokmanovic M., Lukic M., Baltic M. Z., Ivanovic J., Markovic R., Grbic S., Glamoclija N. 2014. Analysis of beef production volume in Serbia from 1985 to 2011. Tehnologija mesa, 55 (1), 73?80. Djordjevic  M.  2016.  Comparative  analysis  of  the  lean  meat  of  carcasses  and  selected  quality parameters of meat of cattle in fattening. Doctoral dissertation. Faculty of Veterinary Medicine, University of Belgrade. Drca,  D.  (2009).  Examination  of  lean  meat  in  beef  cattle  carcasses  in  slaughterhouse  in  Cajetina. University of Belgrade, Serbia. Lukic M, Ivanovic J, Starcevic M, Djordjevic J, Markovic R, Baltic M, 2016. Carcass performance of Simmental and Holstein Friesian beef cattle in Serbia Meat Technology, 57 (2), pp. 95-101 Ostoji? D., Bogdanovi? V., Petrovi? M. M., Aleksi? S., Miš?evi? B., Panteli? V., 2006.: Criteria of Consumers When Purchasing Beef in Retail  Stores, Part B: Position of beef compared to other meat  types,  reasons  and  frequency  of  its  use  in  everyday  nutrition  and  preparation  methods. Biotechnology in Animal Husbandry, 22 (3-4), pp. 45-53. Ostoji?-Andri?  D.,  Aleksi?  S.,  Hristov  S.,  Novakovi?  Z.,  Petrovi?  M.M.,  Nikši?  D.,  Staniši?  N., 2012.  Serbia  in  the  implementation  of  SEUROP  standard  for  beef  carcass  clasification legislation, parametars and evaluation criteria. Biotechonology and Animal Husbandry, 28 (1), pp. 47-58.  Ostoji?  Andri?  D.,  V.  Bogdanovi?,  S.  Aleksi?,  M.M.  Petrovi?,  B.  Miš?evi?,  V.  Panteli?,  S. Josipovi?,  2007.  The  effect  of  genotype  on  dressing  percentage  and  tissue  content  of  beef carcasses. Biotechnology in Animal Husbandry, 23 (3-4), pp. 31–39.  Petrovi? M, ?okovi? R, Petrovi? D. M, Cincovi? M, Ili? Ž. Z, ?obanovi? N, Karabasil N, 2017. Analysis of the degree covering of young bull carcass with fat tissue according to eu standard. 6th  International  Symposium  on  Agricultural  Sciences  ,,AgroReS  2017″,  Book  of  abstracts, Banja Luka, Bosnia and Herzegovina. p. 46.  Petrovi? M, Karabasil N, ?okovi? R, Cincovi? M, Petrovi? D. M, Ili? Ž. Z, Stanimirovi? Z, 2016. Influence of the final mass of young bulls of the Simental breed on dresing percentage. „XXI Conference on Biotechnology”, Faculty of Agronomy in ?a?ak, Book of proceedings, 21(24), 577-580.  Petrovi? M, ?okovi? R, Cincovi? M, Ili? Ž. Z, Petrovi? D. M, ?obanovi? N, Karabasil N, 2017. Effect  of  age  of  young  simmental  bulls  on  dressing  percentage.  Journal  Acta  Agriculturae Serbica, Vol. XXII, 43, p. 11-21. Petrovi? M, ?okovi? R, Cincovi? M, Ili? Ž. Z, Petrovi? D. M, Doskovi? V, Karabasil N, 2017. Analysis of the quality of carcasses of young simental bulls acording to EU standard. Journal Acta Agriculturae Serbica, Vol. XXII, 44, p. 147-156.  Regulation (EC) No. 1249/2008 laying down detailed rules on the implementation of the Commynity scales  for  the  classification  of  the  beef,  pig  and  sheep  carcases  and  the  reporting  of  prices thereof, Official Journal of the European Parlament. Sretenovi? Lj., Panteli? V., Novakovi? M., Novakovi? Ž., Ostoji?-Andri? D., 2011. Production of beef meat with functional food properties. Biotechnology in Animal Husbandry, 27 (3), book 1, pp. 373-385.  Stamenkovi? T, Radovanovi? P., 2004.  A contribution to  study on carcasses of  slaughtered cattle, pigs, sheep and fowls. Meat Technology, 45 (5-6), pp. 219-224.  Vukovi? K. I., 2012. Basics of meat technology. Veterinary Chamber of Serbia, Belgrade. Šefer D, Markovi? R, Nedeljkovi?-Trailovi? J, Petrujki? B, Radulovi? S, Grdovi? S,  2015. The application of biotechnology in  animal nutrition. Veterinarski glasnik, Volume 69, Issue 1-2, Pages: 127-137.   Ispitivanje kvaliteta mesa junadi u jednoj klanici u Raškom okrugu Petrovi? Ž. Miloš 1 *, ?okovi? Radojica 1, Vasilev Dragan2 , ?or?evi? Vesna3 , Dimitrijevi? Mirjana 2, Stajkovi? Silvana 2 , Karabasil Ne?eljko 2 Kratak sadržaj Kvalitet  trupova  zaklanih  životinja  je  predmet  interesovanja,  kako  primarne  proizvodnje,  tako  i industrije  mesa.  Postupak  klasiranja  trupova  odnosno  polutki  sprovodi  se  u  klanicama  neposredno nakon  veterinarskog  pregleda  i  utvr?ivanja  mase  trupa  odnosno  polutki.  U  radu  je  ispitan  kvalitet trupova  junadi,  zaklanih  u  jednoj  klanici  u  Raškom  okrugu,  prema  standardu  koji  se  primenjuje  u zemljama Evropske Unije a koji se još ne primenjuje u Republici Srbiji. Ispitivanje je sprovedeno na 100 trupova junadi (mladih bikova). Za procenu kvaliteta i klasiranje mesa u trupovima koriš?eni su parametri,  prema  Evropskom  standardu  za  klasiranje  trupova  goveda:  masa  žive  životinje,  klani?na težina/masa trupa i randman, konformacija trupa tj. razvijenosti miši?a trupa kao i razvijenost osnovnih delova (but, le?a i ple?ka) i stepen prekrivenosti trupa masnim tkivom.  Klju?ne re?i: kvalitet gove?eg mesa, klasifikacija trupova, mladi bikovi